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Abstract—Atomistic quantum transport simulations of a large
ensemble of devices are employed to investigate the impact of
different sources of disorder on the transport properties of ex-
tremely scaled (length of 10 nm and width of 1–4 nm) graphene
nanoribbons. We report the dependence of the transport gap,
ON- and OFF-state conductances, and ON–OFF ratio on edge-
defect density, vacancy density, and potential fluctuation ampli-
tude. For the smallest devices and realistic lattice defect densities,
the transport gap increases by up to ∼300%, and the ON–OFF
ratio reaches almost ∼106. We also report a rather high variation
of the transport gap and ON–OFF ratio. In contrast, we find that
the potential fluctuations have a negligible impact on the transport
gap and cause a relatively modest increase of the ON–OFF ratio.

Index Terms—Edge defects, graphene nanoribbons (GNRs),
nonequilibrium Green’s function (NEGF) simulation, potential
fluctuations, transport gap, vacancies.

I. INTRODUCTION

NOVEL device architectures and alternative materials have
been investigated in order to solve the issues of transistor

scaling in complementary metal–oxide–semiconductor
(CMOS) technology [1], [2]. Among many candidates,
graphene-based nanoelectronic devices have attracted a tremen-
dous research interest due to high carrier mobility and compati-
bility with the conventional planar technology [3]. The problem
of metallicity of large-area graphene, which causes high OFF-
state leakage and low ON–OFF current ratios, is solved by
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employing graphene nanoribbons (GNRs) that exhibit
bandgaps because of geometric quantum confinement [4]–
[6]. Due to the hyperbolic dependence of the bandgap on
GNR width [7]–[10], acceptable widths are determined by the
acceptable bandgaps necessary for specific CMOS applications.
According to [2], GNR-based field-effect transistors (FETs)
could replace silicon FETs at the 12-nm technology node,
which corresponds to the channel length of approximately
10 nm. Therefore, the investigation of ultrashort (L ∼ 10 nm)
and ultranarrow (W < 5 nm) GNRs is necessitated by scaling
and demands on acceptable bandgaps.

In order to properly assess GNR performance and the appli-
cability of extremely scaled GNRs in CMOS, realistic GNRs
must be investigated. The study should account for the ef-
fects of different disorders that arise from the nonidealities
of the fabrication process and impurities in the substrate. The
influence of disorder in graphene has been studied recently
[11]–[13]. However, the reports on the effects of disorder in
GNRs are limited mostly to the influence of edge defects and
for very large GNRs [10], [14], relatively small ensembles of
simulated devices [15]–[17], or specific cases of lattice defects
[18], [19]. Therefore, a thorough investigation of the influence
of all relevant sources of disorder on the transport properties of
extremely scaled GNRs is indispensable.

In this paper, we present statistically averaged transport prop-
erties obtained from atomistic quantum transport simulations
of large ensembles of randomly generated GNR devices. The
statistical approach is mandatory due to the high variability
of GNR properties caused by disorder, which is even more
prominent in extremely scaled GNRs that are of interest for
the end-of-the-roadmap CMOS. We report the behavior of the
transport gap, ON- and OFF-state conductances, and ON–OFF

ratio at 300 K for various disorder strengths for edge defects,
vacancies, and potential fluctuations.

II. NUMERICAL MODELING

Atomistic simulations based on a tight binding (TB)
Hamiltonian with a single pz orbital basis per carbon atom
are employed in this work. For each GNR, we construct the
Hamiltonian that accounts for up to the third nearest neighbor
interactions, which is given by

H =
∑
i

εic
†
ici +

3∑
k=1

tk
∑
i,j

c†icj + H.c. (1)
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where εi is the on-site energy and c†i(ci) is the creation (annihi-
lation) operator while t1, t2, and t3 are the hopping parameters
for the nearest, second nearest, and third nearest neighbor
interactions taken from [20]. Edge bond relaxation, which is
found to increase the bandgap of GNRs [21], is accounted for
by using a modified hopping parameter t′1 = 1.12t1 for the edge
carbon–carbon bonds [22].

The GNR band structure, density of states (DOS), local DOS
(LDOS), and transmission function are calculated by means of
the nonequilibrium Green’s function (NEGF) formalism [23].
The device Green’s function is obtained as

Gd =
[
(E + i0+)I −H − Σ1 − Σ2

]−1
(2)

where H is the device Hamiltonian and Σ1,2 designates the
contact self-energy that accounts for the coupling of the device
to the contacts. DOS and LDOS are obtained from the spectral
function A(E) = i(Gd −G†

d). The transmission is calculated
as T (E) = Trace(Γ1GdΓ2G

†
d), where the contact broadening

function is obtained from Γ1,2 = i(Σ1,2 − Σ†
1,2). An iterative

procedure is used to calculate the surface Green’s functions that
are needed to obtain the contact self-energies [24], [25].

Edge defects and vacancies are realized by the random
removal of single atoms from the edges or the bulk of GNR
in the given percentage, PED for edge defects and PV for
vacancies. Removing single atoms instead of dimers allows a
more realistic investigation of the effects of lattice defects be-
cause of the bipartite nature of the graphene lattice [12]. In the
total Hamiltonian, hopping parameters of the removed atoms
are set to zero, i.e., the corresponding orbitals are removed
from the TB Hamiltonian. Potential fluctuations are assumed
to originate from the charged impurities in the substrate and
are implemented in the TB model as a local change in the on-
site energy. Fluctuations are randomly generated as positive and
negative Gaussian potential profiles [26] with an amplitude δV
and a density of approximately 1013 cm−2. The density is rather
high due to the small area of the nanoribbon, which is on the
order of ∼10 nm2. Realistic δV ranges from 50 to 150 mV
[27], [28]. The correlation length of the Gaussian profile is set
to Λ = 5aC−C , where aC−C is the carbon–carbon bond length,
which is appropriate for remote charged impurities since Λ is
sufficiently larger than aC−C [29]. Local charge induced by
lattice defects or potential fluctuations is neglected due to a
small change of the potential caused by the charge [27], [28],
which, in turn, has a negligible influence on the transmission,
as reported in Section III. Fig. 1(a) and (b) shows an illustration
of a 1.10-nm-wide GNR with lattice defects and an example of
normalized potential fluctuations, respectively.

We investigate semiconducting armchair GNRs with the
widths in the 1–4-nm range of the same length (L = 10.1 nm),
and all GNRs belong to the same 3m+ 1 group for consistency.
We focus on extremely scaled GNRs (W of 1.10 and 1.84 nm)
and compare their properties with those of the wider nanorib-
bons. GNRs with the width of 1–2 nm and bandgaps of ∼0.4 eV
have been reported experimentally [9], which deepens further
our interest in devices at this scale. For each device and dis-
order case, we perform an averaging over an ensemble of 100
randomly generated GNRs, which results in over 3400 devices
simulated in this work.

Fig. 1. (a) Random realization of a GNR with edge defects and vacancies.
(b) Example of (normalized) randomly generated Gaussian potential fluctua-
tions. W = 1.10 nm, and L = 10.1 nm.

Fig. 2. Influence of edge defects on (a) averaged DOS and (b) averaged
transmission, for different edge-defect densities (PED). GNR width is 1.10 nm.

III. RESULTS AND DISCUSSION

The influence of edge defects on DOS and transmission is
shown in Fig. 2. The comparison between the DOS of an ideal
GNR and averaged DOS curves for different PED, presented in
Fig. 2(a), shows that defected GNRs exhibit nonzero DOS in the
bandgap with a peak at E = 0 eV. This effect is caused by an
uncompensated number of orbitals in two graphene sublattices
caused by the random removal of single atoms [12]. Previous
reports demonstrate that the states in the gap are strongly
localized and do not contribute to conduction according to
the mobility-edge theory [10], [14], [30]. Hence, the bandgap
does not vanish, which demands the evaluation of the effective
transport gap (ETG). Fig. 2(b) shows a comparison between the
transmission of the ideal GNR and the averaged transmission
curves of edge-defected GNRs. Transmission is suppressed
over the whole energy range, and the decrease is stronger for
higher PED. In contrast to the results in [17], the transmission
decreases significantly even for low PED. This difference could
be a consequence of removing single atoms on the edges in
our approach, which results in more atomic sites with localized
states. The most notable effect of introducing edge defects is a
significant increase of ETG. For example, the half gap equals
∼0.8 eV and ∼1.7 eV for PED of 10% and 50%, respectively.
Furthermore, for high edge-defect densities, e.g., PED = 50%,
the transmission exhibits peaks that reach ∼0.01 inside the
transport gap, most likely due to quantum hopping between
localized states [31]. Due to the high transmission variation
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Fig. 3. LDOS of an edge-defected GNR with PED = 50% at different
energies of (a) 0 eV, (b) 1 eV, (c) 1.5 eV, and (d) 2 eV. Each atomic site is
represented by a circle, and the LDOS magnitude is indicated by color. The
legend is in the units of eV−1m−1. W = 1.10 nm.

inside the gap, the ON-state conductance (GON) will depend
strongly on the Fermi energy (EF ) at which GON is defined.
The Fermi level of the GNR can be adjusted by the gate voltage
that is set to supply the voltage (VDD) in the ON state in CMOS
applications. Therefore, a higher PED demands an increased
VDD to achieve the same GON as in the case of low PED. For
example, EF should be set to at least 1 or 1.8 eV if PED is
10% or 50%, respectively, to obtain comparable conductance
in the ON state. However, this is undesirable due to the low
supply voltage (VDD ≤ 0.7 V) that is projected beyond the
12-nm CMOS technology node [2].

The atomistic NEGF approach used in this work allows
the examination of LDOS at any energy. This enables us to
find a limit between the localized and extended states and to
determine the transport gap, i.e., the mobility edge [10]. Fig. 3
shows the LDOS of the edge-defected GNR with PED = 50%
at four different energies in the range from 0 to 2 eV. Localized
states are observed even at 1.5 eV [see Fig. 3(c)], whereas
an extended state is evident in Fig. 3(d) at E = 2 eV, which
clearly indicates that the half gap is between 1.5 and 2 eV.
This conclusion is in accordance with the transmission curve
in Fig. 2(b) that gives a transport gap of ∼1.7 eV. We also
observe a large number of localized states with a high LDOS
at E = 0 eV in Fig. 3(a), which explains the high DOS at
zero energy in Fig. 2(a). Evidently, finding the transport gap
by examining LDOS is a time-consuming procedure since it
demands the comparison of a large number of LDOS plots,
which calls for a simpler method to separate the localized and
extended states.

The DOS and transmission of extremely scaled GNRs are
heavily influenced by vacancies, as shown in Fig. 4. Averaged
DOS curves for various PV values, shown in Fig. 4(a), exhibit
nonzero DOS in the energy gap with a peak strongly confined at
E = 0 eV. In the remaining range, the averaged DOS of GNRs

Fig. 4. (a) Averaged DOS and (b) averaged transmission as a function of
energy for different vacancy densities (PV ). GNR width is 1.10 nm.

Fig. 5. Dependence of (a) averaged DOS and (b) averaged transmission on
energy and the amplitude of potential fluctuations (δV ). W = 1.10 nm.

with vacancies closely follows the DOS of the ideal GNR, and
the smoothing of the Van Hove singularities diminishes as PV

decreases. The comparison of transmission curves presented in
Fig. 4(b) shows an increasing ETG with increasing PV . The
transport gap increase is considerably weaker than in the case
of edge-defected GNRs since it reaches ∼1.1 eV for a very
high PV of 10%. Fig. 4(b) also shows that the transmission is
suppressed rather uniformly over the whole energy range, in
contrast to edge-defected GNRs where the decrease is stronger
at lower energies. Due to the lower transmission variation inside
the gap, GON in GNRs with vacancies should depend less
on VDD than in the case of edge defects. Nevertheless, if we
compare transmission values at E = 0.7 eV (projected supply
voltage for the 12-nm CMOS [2]), the transmission decreases
approximately 8×, 110×, 229×, and 957× as PV increases
from 1%, over 3% and 5%, to 10%.

Fig. 5 shows the effects of potential fluctuations. Results
shown in Fig. 5(a) demonstrate that amplitudes δV ≤ 100 mV
have a negligible influence since the bandgap and Van Hove
singularities are preserved. In contrast to lattice defects, we
find that the potential disorder examined in this work does not
induce localized states and high DOS at zero energy. However,
some states with nonzero DOS exist in the bandgap for δV of
250 or 500 mV, and we attribute this localization to potential
wells formed by fluctuations. We note that DOS is asymmet-
rical with respect to E = 0 eV, i.e., for the electron and hole
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Fig. 6. Dependence of the parameter PLOC defined in the text on energy for
GNRs that are (a) 1.10 nm and (b) 1.84 nm wide. Plots show PLOC behavior
for four densities of edge defects (PED).

energy range, due to the randomness of the local shifts in the
on-site energy. The comparison of transmission curves shown
in Fig. 5(b) demonstrates a relatively weak impact of potential
fluctuations, even for the unrealistically high δV of 500 mV.
In comparison to edge defects and vacancies, ETG increases
only slightly, and the influence of potential disorder on GON

is expected to be modest since the transmission decrease at
E = 0.7 eV equals 1.5×, 2.0×, and 3.9× as δV increases from
100 mV, over 250 mV, to 500 mV. Potential fluctuations cause
elastic scattering, in contrast to lattice defects that cause inelas-
tic scattering which is far more effective in reducing the trans-
mission. The transport regime in the ON state can be examined
by calculating the mean free path (λ), as was done for edge-
defected GNRs in [25]. As δV increases from 100 to 500 mV,
λ decreases from 13.2 to 2.9 nm, which indicates ballistic
transport for δV ≤ 100 mV, i.e., for realistic amplitudes. The
weak influence of potential fluctuations justifies our decision
to neglect the induced local charges and the corresponding
potential change, which discards the need to solve the Poisson
equation. For other disorder cases, the transport is diffusive
because we obtain λ < 1.3 nm � L.

In addition to the ETG values extracted from the transmis-
sion, we also find ETG using an energy-dependent parameter
that enables the separation of extended and localized states. For
each energy, we count the number of atomic sites (Nη) that
exhibit an LDOS value higher than η = 5% of the maximum
LDOS at that energy. The parameter is then calculated as

PLOC = 100% ·Nη/(NTOT −NR) (3)

where NTOT is the total number of atoms and NR is the number
of removed atoms. This parameter should be smaller in the
range of localized states than for extended states because Nη

is small for localized states. Hence, PLOC can be interpreted as
an indicator of localization strength. For the ideal GNR, PLOC

is ∼100%. The parameter is shown in Fig. 6 for the case of edge
defects for GNR widths of 1.10 nm [see Fig. 6(a)] and 1.84 nm
[see Fig. 6(b)]. As PED increases, PLOC decreases over the
whole energy range for both devices due to the increased
generation of localized states. Going from E = 2 eV down to
0 eV, PLOC is almost constant to a certain limit (particularly
for the wider GNR) and then decreases abruptly as energy

Fig. 7. Dependence of ETG/2 on disorder strength is shown in (a)–(c) for
W = 1.10 nm and in (d)–(f) for W = 1.84 nm. Full symbols and full line
denote the PLOC-based half gap, while empty symbols and dashed line are
used for the transmission-based half gap.

decreases, which indicates extended states at high energies and
enhanced localization effects at low energies. This behavior
allows us to define a transport gap within the mobility-edge
approach [30] via PLOC curves. We extract the PLOC-based
ETG as the energy range where PLOC is less than 50% and
compare it to the transmission-based ETG that is extracted as
the energy range in which the transmission is lower than 0.01.

The dependence of the half gap on the strength of different
disorders is shown in Fig. 7 for the two examined GNRs. Due
to weak localization, PLOC does not reach 50% in the case of
potential fluctuations, and it is therefore possible only to extract
the transmission-based ETG, as shown in Fig. 7(c) and (f). For
W = 1.10 nm, ETG curves exhibit an almost identical behavior
in Fig. 7(a) and (b). However, a strong discrepancy between
the two methods can be seen in the case of W = 1.84 nm for
which the half-gap curves diverge as PED or PV increases [see
Fig. 7(d) and (e)]. This disagreement is consistently observed
in GNRs with W > 1.84 nm (not shown here), and it renders
the mobility-edge approach inadequate for the extraction of
the transport gap in extremely scaled GNRs. Nevertheless,
PLOC-based ETG offers a valuable physical insight; namely,
there exists a range of localized states that conduct well since
the transmission-based ETG is smaller than the PLOC-based
ETG. In other words, the transmission can exhibit peaks at
certain energies even though the states are localized, as indi-
cated by the parameter PLOC, which indicates that quantum
hopping between localized states most likely enhances the
transmission [32], [33] and decreases the transmission-based
ETG. This effect could be responsible for the unexpectedly
low bandgap (< 0.5 eV) observed in sub-5-nm-wide GNRs
reported in [9].

Edge defects have the greatest influence on the transport
gap, as shown in Fig. 7(a) and (d). For PED = 50%, the
transmission-based half gap increases by 299% and 43% for W
of 1.10 and 1.84 nm, respectively. In comparison, the PLOC-
based method predicts enhancements of 311% and 241%,
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which also predict a higher immunity of wider GNRs. In
contrast, the half-gap dependence on PV [see Fig. 7(b) and (e)]
is almost linear because the increasing number of vacancies
blocks the transport due to the decreasing number of avail-
able atomic sites and states. Interestingly, wider GNR exhibits
a larger gap than the narrower one at very high vacancy
density, i.e., PV of 5% and 10%, but ETG is lower in the
1.84-nm-wide GNR for more realistic PV . For PV = 3%,
the half gap reaches 0.602 and 0.451 eV for GNR widths
of 1.10 and 1.84 nm, respectively. Potential fluctuations [see
Fig. 7(c) and (f)] cause a 3%–4% increase of the half gap for
the highest amplitude considered. Hence, our results demon-
strate that the transport gap of extremely scaled GNRs is
immune to potential disorder, as demonstrated experimentally,
e.g., by Stampfer et al. [28] in larger GNRs (W ≈ 45 nm
and L ≈ 200 nm). For edge-defected GNRs wider than those
shown in Fig. 7, the transmission-based ETG increases by
22%, 20%, and 23% (for PED of 50%, compared to ideal
GNRs) for nanoribbons that are 2.58, 3.32, and 4.06 nm
wide, respectively. Hence, in GNRs with edge defects, we
observe a generally decreasing ETG enhancement when the
GNR width increases, which demonstrates a higher immunity
to edge disorder in wider nanoribbons. As for the vacancies
and potential fluctuations, wider GNRs exhibit qualitatively
identical behavior as the two narrowest GNRs, i.e., an almost
linear dependence of ETG on PV and a negligible influence of
potential fluctuations.

The variation of ETG values from device to device is very
important from the reliability point of view. We report the
standard deviation (σ) of ETG given as a percentage of the
average ETG obtained for a given width and disorder strength.
For W = 1.10 nm, we obtain σ of up to 31.6%, 20.5%, and
6.9% in the case of edge defects, vacancies, and fluctuations,
respectively. Similarly, maximum deviations for the 1.84-nm-
wide nanoribbon are 27.3%, 23.6%, and 7.5%, which are
quite close to the values obtained for W = 1.10 nm. We have
also analyzed edge-defected GNRs with the widths of up to
∼4 nm and found that the maximum standard deviations are
28.2%, 33.6%, and 34.7% for W of 2.58, 3.32, and 4.06 nm,
respectively. Therefore, we do not observe a clear trend in ETG

deviation versus GNR width for edge-defected GNRs, i.e., σ
is close to 30% for all devices considered in this work. From
the results presented earlier, the rather high variation of ETG

from device to device could be the most important limiter for
the possible CMOS application of extremely scaled GNRs.

The behavior of DOS and transport gap reported so far
in this paper is vital for carrier mobility modeling within
the semiclassical approach based on the Kubo–Greenwood
formalism and the calculation of scattering rates. Namely, as
shown in [30], [34], and [35], the scattering spectra of relevant
scattering mechanisms in GNRs depend directly on DOS that
is heavily influenced by disorder. Hence, the deformation of
the Van Hove singularities, the nonzero DOS in the gap, and
the effects of disorder on the transport gap and its variation
should be accounted for when calculating carrier mobility
in GNRs.

In order to study the influence of disorder on the ON-state
and OFF-state (GOFF) conductances and ON–OFF conductance

Fig. 8. For the 1.10-nm-wide GNR, the dependence of (full line) GON

and (dashed line) GOFF on disorder strength is shown in (a)–(c), while the
dependence of (dotted line) GON/GOFF ratio on PED, PV , and δV is
presented in (d)–(f). Conductances are calculated for 300 K.

ratio, we calculate the conductances at 300 K using

G =
2e2

h

∞∫
0

dE T (E)

[
−∂f(E)

∂E

]
(4)

where T (E) is the averaged transmission function for a given
device and disorder strength, f(E) is the Fermi–Dirac dis-
tribution function, and h is the Planck’s constant. We define
GON at EF = 0.7 eV because 0.7 V is the projected VDD

for the 12-nm CMOS node [2], while GOFF is calculated
for EF = 0 eV. Fig. 8 presents the conductance and ratio
results for W = 1.10 nm. Generally, both the ON- and OFF-
state conductances decrease as disorder strength increases due
to suppressed transmission, while GON surprisingly exhibits a
minimum for PED = 20%. We attribute this behavior to the
occurrence of transmission peaks inside the transport gap when
PED increases [see Fig. 2(b)]. For PED > 20%, GON increases
because the weight function ∂f/∂E in (4) encompasses the
local transmission peaks in the calculation of the ON-state
conductance [cf. transmission curves around E = 0.7 eV in
Fig. 2(b)]. Interestingly, GOFF is higher in defected GNRs
with PED = 10% and PV = 1% than in the ideal GNR [see
Fig. 8(a) and (b)] due to the existence of localized states with
relatively high transmission near E = 0 eV. For higher disorder
strengths, GOFF decreases due to stronger localization effects
and the increase of the transport gap. With the increasing
disorder strength, the ON–OFF conductance ratio shown in
Fig. 8(d)–(f) increases in edge-defected GNRs and GNRs with
potential fluctuations due to the stronger decrease of GOFF

than of GON, whereas in the case of vacancies, GON/GOFF

decreases with increasing PV . The maximum ratio for edge-
defected GNRs with W = 1.10 nm is 6.6 · 105. The results
for the 1.84-nm-wide GNR are shown in Fig. 9, where similar
trends can be observed as in the case where W = 1.10 nm, i.e.,
GON and GOFF decrease with increasing disorder strength and
GON/GOFF increases in GNRs with edge defects and potential
fluctuations. The major dissimilarity between the two devices
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Fig. 9. (Full line) GON and (dashed line) GOFF versus disorder strength for
W = 1.84 nm are shown in (a)–(c), whereas the dependence of GON/GOFF

ratio on PED, PV , and δV is presented in (d)–(f) with a dotted line. Conduc-
tances are calculated for 300 K.

Fig. 10. Influence of different edge-defect densities on (full line) GON and
(dashed line) GOFF is shown in (a)–(c), whereas the behavior of the GON/
GOFF ratio is presented in (d)–(f). GNR widths are [(a) and (d)] 2.58 nm,
[(b) and (e)] 3.32 nm, and [(c) and (f)] 4.06 nm.

is that the wider GNR exhibits a smaller difference between the
ideal GNR and defected GNRs with PED = 10% and PV = 1%
and a less noticeable GON minimum for edge-defected GNRs,
which indicates weaker effects of local transmission peaks in
wider GNRs [36]. The ON–OFF conductance ratio for W =
1.84 nm and PED = 50% equals 2.4 · 105, which is comparable
to that of the 1.10-nm-wide GNR, and agrees to the order of
magnitude with the experimentally obtained ON–OFF ratios for
the 1–2-nm-wide GNRs in [9]. This indicates that even the
smoothest fabricated extremely narrow GNRs exhibit a high
edge-defect density. Here, we quantitatively compare only the
GON/GOFF calculated for edge-defected nanoribbons because
the GNRs in [9] are fabricated by the unzipping of carbon
nanotubes and are expected to have a negligible density of
vacancies. As shown in Fig. 10, wider GNRs with edge defects
(widths of 2.58, 3.32, and 4.06 nm) exhibit similar conductance
and ON–OFF ratio dependence on PED, compared to each other

and to the two narrowest GNRs (see Figs. 8 and 9). We observe
that GON and GOFF generally decrease, while GON/GOFF in-
creases with increasing PED. As the GNR width increases, the
maximum ON–OFF conductance ratio decreases from 9.8 · 104,
over 2.0 · 104, down to 3.1 · 103 for W of 2.58, 3.32, and
4.06 nm, respectively. Strikingly, the ratio is two orders of
magnitude lower in the widest nanoribbon compared to the
1.10-nm-wide GNR, which agrees with the strong GON/GOFF

decrease in wider GNRs reported experimentally in [9].
The variation of the ratio is described by the standard

deviation of log[GON/GOFF], given as a percentage of the
average value. For W = 1.10 nm, the maximum σ equals
47.9%, 38.7%, and 5.4%, whereas the deviation obtained for
the 1.84-nm-wide GNR is 26.2%, 37.5%, and 7.3%, for edge
defects, vacancies, and potential fluctuations, respectively. Sim-
ilarly to the variation of ETG, potential fluctuations exhibit
the weakest effect, while lattice defects cause a significant
variation of GON/GOFF from device to device. The deviation
of log[GON/GOFF] in wider edge-defected GNRs is 19.5%,
17.7%, and 18.2% for the widths of 2.58, 3.32, and 4.06 nm, re-
spectively. The results indicate that the variation of the ON–OFF

conductance ratio in edge-defected GNRs decreases in wider
nanoribbons, whereas vacancies and potential fluctuations
cause similar deviations irrespective of the nanoribbon width.

IV. CONCLUSION

We have investigated the effects of different disorders on the
transport properties of extremely scaled GNRs (with device size
for the 12-nm CMOS node) using atomistic NEGF simulations.
The transport gap is extracted directly from the transmission
characteristics and using an LDOS-based parameter that can
differentiate localized and extended states and hence supply the
bandgap within the mobility-edge approach. We report ETG

dependence on the density of edge defects and vacancies and
on the amplitude of potential fluctuations. For realistic PED,
the gap increase caused by edge defects is 23% to 299%,
when scaling the GNR width from 4.06 nm down to 1.10 nm.
We find that the mobility-edge approach is unsuitable for the
extraction of the transport gap in extremely scaled GNRs due
to the discrepancy with ETG values extracted directly from
transmission functions. We have also examined the behavior of
the ON- and OFF-state conductances and the ON–OFF ratio at
300 K. Generally, GON and GOFF decrease as disorder strength
increases. With the increase of PED, PV , and δV , the ON–OFF

ratio increases in the case of edge defects and fluctuations,
while it decreases in GNRs with vacancies, for all GNRs
investigated. The narrowest edge-defected GNRs investigated
(1–2 nm wide) with a PED of 50% exhibit an ON–OFF conduc-
tance ratio of ∼105, which matches the available experimental
data for extremely narrow GNRs and indicates that even the
smoothest fabricated GNRs exhibit a high edge-defect density.
We have calculated the standard deviation of ETG and of the
exponent log[GON/GOFF], and our results demonstrate a rather
high variation from device to device, i.e., σ of up to 35% for
ETG and up to 48% for the ON–OFF ratio. The variation of the
transport properties caused by defects could be a strong limiter
for the nanoelectronics applications of extremely scaled GNRs.
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